
Operating Systems 2016/17
Assignment 10

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, January 16th, 2017 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with caches and paging-based address trans-
lation.

T-Question 10.1: Caches
a. Why do virtually-indexed, physically-tagged caches not suffer from the ambiguity

problem? 1 T-pt

b. Consider the following code fragment. The algorithm has been optimized so that
the loop only has to modify every 16th array element (k = 16) instead of every
element (k = 1). However, although the loop now does only 6% of the original work,
the execution of the loop still needs 98% of the original time. What might be the
reason? Explain your answer! 1 T-pt

#define ARRAY LENGTH 64 ∗ 1024 ∗ 1024
int a [ARRAY LENGTH] ;

// −−− some algorithm here −−−

for (int i = 0; i < ARRAY LENGTH; i += k) { a [i]++; }

c. What kinds of cache-misses do exist? What can you do to reduce the number of
cache misses of each type? 3 T-pt

T-Question 10.2: Paging
Consider a system that translates virtual addresses to physical addresses using
hierarchical page tables. Every page table comprises 512 entries, with each entry
having a size of 8 bytes. The size of both the virtual and the physical address spaces
is 512 GiB. The page size is 4096 bytes.

a. How many page tables build a full page table hierarchy in the given system? How
many levels does the hierarchy have? 2 T-pt

b. Into what parts would a MMU for the system split the virtual address during ad-
dress translation? For each part give its length in bits. 2 T-pt

c. How many page tables exist when using inverted page tables and single level for-
ward page tables in the operating system, respectively? Briefly explain how you
derived your answer. 1 T-pt

1

P-Question 10.1: MMU for Paging

Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file page table.c.

Consider a 32 bit x86 system that uses a paging-based 32 bit virtual to 32 bit phy-
sical address translation with a two-level page table hierarchy. See the lecture (10.
Paging) for more information.

In this question you will implement a simplified MMU for x86 paging in software.
The simplified PTEs contain the following fields:

Present Bit Set to 1 if the PTE represents a valid mapping.

Read/Write Bit If set to 1, writes are allowed to the page, otherwise the page is
read-only. If an access is performed from kernel-mode, pages are always writa-
ble.

User/Kernel Bit If set to 0, access from user-mode is not allowed to the page. If
an access is performed from kernel-mode, both user- and kernel pages may
be accessed.

Accessed Bit Indicates whether the MMU has used the PTE for translation.

Frame/Page-Table Base Address Physical frame number (PFN) of the referenced
target frame. If the PTE’s flag fields are masked, the resulting value is the
physical base address of the target frame (i.e., the address of the frame’s first
byte). For page directory entries (PDEs), the target frame must hold the corre-
sponding second-level page table.

Frame / Page-Table Base Address Unused A
U
K

R
W

P

Accessed
User/Kernel
Read/Write
Present

31 12 11 6 5 4 3 2 1 0

The template already provides bit masks to work with the fields of the PTE as well
as functions to retrieve the individual parts of a virtual address (getVirtualBase,
getPageDirectoryIndex, ...).

a. Write a function that maps a given virtual page to a given physical frame. The
function takes the base address of the page and the target frame as well as the
intended access rights as input. Your implementation should fulfill the following
requirements: 3 P-pt

• Uses cr3 to get the page directory and find the correct page directory entry.

• Allocates a new page table if the PDE is not valid, using posix memalign(). This
way the allocated memory for the page table can be aligned to page boundaries,
allowing correct addressing via the base address field (i.e., low 12 bits zero).
Use pointerToInt() to convert the resulting pointer to an integer. Initialize the
new page table to all zeros. Do not forget to set the present bit, when updating
the PDE.

• Builds the new PTE to establish the desired mapping and updates the page
table.

• Returns 0 on success, -1 otherwise (e.g., page table allocation failed).

2

int mapPage(uint32_t virtualBase, uint32_t physicalBase,
ReadWrite accessMode, PrivilegeLevel privileges);

b. Write a function that translates a virtual address to a physical address. The func-
tion should fulfill the following requirements: 3 P-pt

• Uses cr3 to get the page directory and to find the correct page table and page
table entry for the virtual address *address.

• Fails if no page table is allocated or no mapping for the virtual page has been
established.

• Fails if the desired access is not allowed or the current privilege level of the
CPU is not sufficient for the access according to the mapping.

• Performs the address translation and assigns the resulting physical address
to *address.

• Updates the accessed flag of the PTE.

• Returns 0 on success, -1 otherwise.

int translatePageTable(uint32_t *address, ReadWrite accessMode,
PrivilegeLevel privileges);

c. The MMU should be extended with a translation lookaside buffer (TLB), that caches
used PTEs, internally using the virtual page base address as key. Complete the
TLBEntry data structure and write a function that clears a certain entry in the
TLB. Hints: The valid field in the structure indicates if an TLB entry is used and 1 P-pt
contains a cached PTE. You can access a TLB entry with tlb.entries[x].

void invalidateTLBEntry(uint32_t virtualBase);

d. Write a function that caches a PTE in the TLB entry specified by index. 1 P-pt

void _addToTLBAt(int index, uint32_t virtualBase,
uint32_t pte);

e. Write a function that performs a lookup for the supplied virtual address in the TLB.
On success, the function should pass the physical address by updating the value
pointed to by address and return 0. If a matching translation does not exist, the
function should return -1. Hints: Remember that the TLB must perform the same 1 P-pt
access permission checks as translatePageTable().

int translateTLB(uint32_t *address, ReadWrite accessMode,
PrivilegeLevel privileges);

f. Integrate the TLB into mapPage() and translatePageTable() by adding new TLB
entries or invalidating existing ones as needed. Use the existing functions. 1 P-pt

Total:
10T-pt
10P-pt

3

